Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 56(5): 530-545, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36168821

RESUMO

BACKGROUND/AIMS: Cells require regular maintenance of proteostasis. Synthesis of new polypeptides and elimination of damaged or old proteins is an uninterrupted mechanism essential for a healthy cellular environment. Impairment in the removal of misfolded proteins can disturb proteostasis; such toxic aggregation of misfolded proteins can act as a primary risk factor for neurodegenerative diseases and imperfect ageing. The critical challenge is to design effective protein quality control (PQC) based molecular tactics that could potentially eliminate aggregation-prone protein load from the cell. Still, targeting specific components of the PQC pathway for the suppression of proteotoxic insults retains several challenges. Earlier, we had observed that LRSAM1 promotes the degradation of aberrant proteins. Here, we examined the effect of resveratrol, a stilbenoid phytoalexin compound, treatment on LRSAM1 E3 ubiquitin ligase, involved in the spongiform neurodegeneration. METHODS: In this study, we reported induction of mRNA and protein levels of LRSAM1 in response to resveratrol treatment via RT-PCR, immunoblotting, and immunofluorescence analysis. The LRSAM1-mediated proteasomal-based clearance of misfolded proteins was also investigated via proteasome activity assays, immunoblotting and immunofluorescence analysis. The increased stability of LRSAM1 by resveratrol was demonstrated by cycloheximide chase analysis. RESULTS: Here, we show that resveratrol treatment induces LRSAM1 E3 ubiquitin ligase expression levels. Further, our findings suggest that overexpression of LRSAM1 significantly elevates proteasome activities and improves the degradation of bona fide heat-denatured luciferase protein. Exposure of resveratrol not only slows down the turnover of LRSAM1 but also effectively degrades abnormal proteinaceous inclusions, which eventually promotes cell viability. CONCLUSION: Our findings suggest that resveratrol facilitates LRSAM1 endogenous establishment, which consequently promotes the proteasome machinery for effective removal of intracellular accumulated misfolded or proteasomal-designated substrates. Altogether, our study proposes a promising molecular approach to specifically trigger PQC signaling for efficacious rejuvenation of defective proteostasis via activation of overburdened proteolytic machinery.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina-Proteína Ligases , Cicloeximida , Luciferases , Peptídeos , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro , Resveratrol/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Neuroscientist ; 28(3): 271-282, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33530848

RESUMO

A healthy physiological environment of cells represents the dynamic homeostasis of crowded molecules. A subset of cellular proteome forms protein quality control (PQC) machinery to maintain an uninterrupted synthesis of new polypeptides and targeted elimination of old or defective proteins. The process of PQC may get overwhelmed under specific genetic mutations, environmental stress conditions, and aging-associated perturbances. Many of these conditions may lead to the generation of various types of aberrant protein species that may or may not accumulate as large cellular inclusions. These proteinaceous formations, referred to as inclusion bodies (IBs), could be membrane-bound or membrane-less, cytoplasmic, or nuclear. Most importantly, they could either be toxic or protective. Under acute stress conditions, the formation of aggregates may cause proteostasis failure, leading to large-scale changes in the cellular proteome compositions. However, the large insoluble IBs may act as reservoirs for many soluble proteins with high aggregation propensities, which can overwhelm the cellular chaperoning capacity and protein degradation machinery. The kinetic equilibrium between folding and unfolding, misfolding, and refolding; aggregation and degradation is perturbed in one or many neurodegenerative disorders (NDDs) associated with dementia, cognitive impairments, movement, and behavioural losses. However, a detailed interplay of IBs into the manifestation of the NDDs is unknown, and a very primitive knowledge of structural compositions of amyloid inclusions is present. The present article presents a brief evolutionary background of IBs; their functional relevance for prokaryotes, plants, and animals; and associated involvement in neuronal proteostasis.


Assuntos
Corpos de Inclusão , Doenças Neurodegenerativas , Animais , Humanos , Corpos de Inclusão/metabolismo , Doenças Neurodegenerativas/metabolismo , Dobramento de Proteína , Proteoma
3.
Mech Ageing Dev ; 200: 111574, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34562507

RESUMO

Cellular homeostasis is regulated by the protein quality control (PQC) machinery, comprising multiple chaperones and enzymes. Studies suggest that the loss of the PQC mechanisms in neurons may lead to the formation of abnormal inclusions that may lead to neurological disorders and defective aging. The questions could be raised how protein aggregate formation precisely engenders multifactorial molecular pathomechanism in neuronal cells and affects different brain regions? Such questions await thorough investigation that may help us understand how aberrant proteinaceous bodies lead to neurodegeneration and imperfect aging. However, these studies face multiple technological challenges in utilizing available tools for detailed characterizations of the protein aggregates or amyloids and developing new techniques to understand the biology and pathology of proteopathies. The lack of detection and analysis methods has decelerated the pace of the research in amyloid biology. Here, we address the significance of aggregation and inclusion formation, followed by exploring the evolutionary contribution of these structures. We also provide a detailed overview of current state-of-the-art techniques and advances in studying amyloids in the diseased brain. A comprehensive understanding of the structural, pathological, and clinical characteristics of different types of aggregates (inclusions, fibrils, plaques, etc.) will aid in developing future therapies.


Assuntos
Envelhecimento/fisiologia , Encéfalo , Doenças Neurodegenerativas , Amiloide/metabolismo , Tecnologia Biomédica/métodos , Tecnologia Biomédica/tendências , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Corpos de Inclusão , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Agregação Patológica de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA